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a b s t r a c t

In the present paper a direct heat source scheme is proposed to let the temperature at the immersed
boundary satisfy the temperature Dirichlet boundary condition. And the explicit interactive process of
the direct heat source scheme called multi-direct heat source scheme is applied to ensure the satisfaction
of the temperature Dirichlet boundary condition at the immersed boundary. The second-order spacial
accuracy of the solver is confirmed by simulating the Taylor–Green vortices. The simulations of natural
convection between concentric cylinders, and flow past a stationary circular cylinder are conducted to
validate the accuracy of present method on solving heat transfer problems. And the computation of flow
past a staggered tube bank with heat transfer is conducted to verify the capability of present method on
solving complex geometries problems.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction tions between solid boundary and fluid, some forcing schemes are
The flow past bluff bodies with convective heat transfer is
widely existed in industry applications. The understanding of the
characteristics of the convective heat transfer on bluff bodies is
of great important in engineering. Experiments have been done
to obtain the empirical correlations about the Nusselt number
[1,6]. As the development of computer, many numerical studies
on the convective heat transfer for the flow past bluff bodies have
been done. Chang et al. [2] applied the finite-element method to
study the heat transfer from a cylinder to a Newtonian fluid in lam-
inar flow. Rosales et al. [5] numerically investigated the unsteady
laminar flow and heat transfer characteristics from square cylin-
ders located in a channel with a fully developed inlet velocity pro-
file. Bagchi et al. [7] studied the flow and heat transfer past a
sphere in a uniform flow with direct numerical solution in spheri-
cal coordinates. The body-fitted coordinates approach to solve flow
past bluff bodies will increase the difficult in mesh generation. For
the simulations of the oscillating or moving bluff bodies, the adapt-
ing mesh of the varying positions of the bluff bodies leads to tre-
mendous computational cost. To overcome these problems, some
computational techniques based on fixed Cartesian coordinates
are proposed such as the distributed Lagrange multiplier/fictitious
domain method [12], immersed interface method [13] and im-
mersed boundary method [14].

The immersed boundary method originally proposed by Peskin
[14] has attracted considerable interest in the last few years [15].
In Peskin’s case, the singular force on the Lagrangian coordinates
at the immersed boundary was exerted on the flow field via Dirac
delta function. And for the sake of calculating the mutual interac-
ll rights reserved.
proposed. Goldstein et al. [16] proposed a feedback forcing scheme
to iteratively determined the magnitude of the force to let the veloc-
ity on the immersed boundary satisfy the no-slip boundary condi-
tion. Saiki et al. [17] applied this feedback forcing scheme to
compute the flow past a stationary and oscillating circular cylinder
successfully. Fadlun et al. [18] proposed a direct forcing scheme to
calculate the interaction force between immersed boundary and
fluid. The velocity at the points which are close to the immersed
boundary is simply set at every time-step. And it seems like applying
an equivalent forcing term to the Navier–Stokes equations. Uhlmann
[19] applied the direct forcing with immersed boundary to study the
particulate flows in multiphase system. The approach proposed by
Uhlmann [19] incorporates the regularized delta function into a di-
rect formulation of the fluid–solid interaction force to allow for a
smooth transfer between the Eulerian girds and the Lagrangian
points. Wang et al. [20] proposed a multi-direct forcing scheme to
compute the interaction between the immersed boundary surface
and fluid. The immersed boundary method with multi-direct forcing
scheme proposed by Wang et al. [20] is based on the direct forcing
scheme proposed by Fadlun et al. [18] and the smooth transfer meth-
od applied by Uhlmann [19] to iteratively reinforce the satisfaction
of the no-slip boundary condition on the immersed surface.

The studies of the immersed boundary method mainly focus on
solving the flow problems and seldom on heat transfer problems.
Yoon et al. [3] applied the immersed-boundary finite volume
method to investigate two-dimensional laminar fluid flow and
heat transfer past a circular cylinder near a moving wall with.
Kim et al. [10] used the immersed boundary method to study the
natural convection induced by a temperature difference between
a cold outer square enclosure and a hot inner circular cylinder
numerically. Feng et al. [11] applied the immersed boundary meth-
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Nomenclature

Cd drag coefficient
c parameter of outflow boundary condition
cP heat capacity
dh temporary parameter in Eq. (20)
F force exerted on the Lagrangian point
f external force
Gr Grashof number
g characteristic acceleration of gravity
h Eulerian grid size
k thermal conductivity coefficient of fluid
L characteristic length of flow field
Lw wake length
l norm error
m tube sequence
N number of Lagrangian points
ND number of total tubes
NTr number of tubes in transverse direction
NX, NY total mesh points in x and y direction, respectively
NFE times of exerting multi-direct heat source
NFM times of exerting multi-direct forcing
Nu Nusselt number
n time level
P pressure of fluid
Pe Peclet number
Pr Prandtl number
Q heat source exerted on the Lagrangian point
q heat source
R radius of cylinder
Ra Rayleigh number
Re Reynolds number
r temporary parameter in Eq. (21)
STr dimensionless transverse distance between two consec-

utive tubes
T flow temperature
t time

Dt time step
U characteristic velocity of flow field
u velocity of fluid
DV discrete volume
x position of Eulerian mesh

Greek letters
X whole computational domain
a temporary parameter in Eqs. (22) and (27)
b thermal expansion coefficient
q fluid density
l viscosity of fluid
h angle measured from stagnation point
d Dirac delta function
dh discrete Dirac delta function

Subscript
0 far-field parameter
1,2 count number
i inter cylinder parameter
k parameter defined on Lagrangian point
L desired parameter
o outer cylinder parameter
out outflow boundary parameter
P domain of immersed boundary
S solid body parameter
T temperature parameter
u parameter in horizontal direction
v parameter in vertical direction

Superscript
� dimensionless parameter
h i average parameter
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od with a difference method to study the thermal convection in
particulate flows.

In the present paper, the immersed boundary method with fi-
nite difference scheme is applied to solve heat transfer problem.
A direct heat source scheme is proposed to let the temperature
at the immersed boundary satisfied the temperature Dirichlet
boundary condition. And the explicit interactive process of the di-
rect heat source scheme called multi-direct heat source scheme is
applied to ensure the satisfaction of the temperature Dirichlet
boundary condition at the immersed boundary. And the multi-di-
rect forcing scheme proposed by Wang et al. [20] is applied to en-
sure the satisfaction of the no-slip velocity boundary condition at
the immersed boundary. The paper is organized as follows. Section
2 introduces the numerical schemes for the momentum and en-
ergy coupling between fluid and solid boundary. Some numerical
experiments are done to validate the accurate of the multi-direct
heat source scheme which compose Section 3. And Section 4 is
the summaries and conclusions.

2. Numerical schemes

2.1. Governing equations for fluid flow

The dimensionless governing equations for incompressible
flows in the entire computational domain X with thermal convec-
tion are:
r � ~u ¼ 0 ð1Þ
@~u
@~t
þ ~u � r~u ¼ �r~P þ 1

Re
r2 ~uþ Gr

Re2 � ~T � ~g þ
~f ð2Þ

@~T
@~t
þ ~u � r~T ¼ 1

Pe
r2 ~T þ ~q ð3Þ

where ~u is the dimensionless velocity of fluid, ~P is the dimension-
less pressure. Re is the Reynolds number defined as Re ¼ q0 �U�L

l : Here,

U is the characteristic velocity and L is the characteristic length of
flow field, l is the viscosity of fluid, q0 is the density of fluid. Gr

is the Grashof number defined as Gr ¼ g�b�ðTS�T0Þ�L3 �q3
0

l2 with character-

istic acceleration of gravity g, the coefficient of thermal expansion
b, the temperature of immersed body TS, and the far-field tempera-
ture T0. Pe is the Peclet number defined as Pe = Re�Pr, and Pr is the
Prandtl number which is defined as Pr ¼ cP �l

k , where cP is the heat
capacity and k is the coefficient of thermal conductivity. The dimen-
sionless temperature is defined as ~T ¼ T�T0

TS�T0
:

In momentum equations (2), the dimensionless external force ~f
which is the mutual interaction force between fluid and immersed
boundary is expressed as following:

~f ðxÞ ¼
Z

XP

FkðxkÞ � dðx� xkÞdxk ð4Þ

where XP is the domain of the immersed boundary, d(x � xk) is the
Dirac delta function, xk is the position of the Lagrangian points set at
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the immersed boundary, x is position of the computational Eulerian
mesh and Fk(xk) is the force exerted on the Lagrangian point xk. Sim-
ilarly in energy equation (3), the dimensionless external heat source
~q which is the mutual interaction energy between fluid and im-
mersed boundary is expressed as following:

~qðxÞ ¼
Z

XP

Q kðxkÞ � dðx� xkÞdxk ð5Þ

where Qk(xk) is the heat source on the Lagrangian point xk at the im-
mersed boundary.

2.2. Momentum and energy coupling scheme

2.2.1. Direct forcing scheme
For sake of sequence, the direct forcing and two-way coupling

schemes are introduced first. In order to let the velocity on the
Lagrangian points at the immersed boundary satisfy the no-slip
boundary condition of velocity, a forcing Fk(xk) is imposed on the
Lagrangian point to modify its velocity equal the desired velocity
uL at the immersed boundary. The forcing Fk(xk) is determined as
follows.

From the momentum equation (Eq. (2)) of the flow field, one
can get

~f ¼ @
~u
@~t
þ ~u � r~uþr~P � 1

Re
r2 ~u� Gr

Re2 � ~T � ~g ¼
@~u
@~t
� rhsu

¼
~unþ1 � ~un

D~t
� rhsu ð6Þ

where n and n + 1 represent two different time and

rhsu ¼ � ~u � r~uþr~P � 1
Re
r2 ~u� Gr

Re2 � ~T � ~g
� �

ð7Þ

And for the Lagrangian point xk at the immersed boundary, one can
get

FkðxkÞ ¼
~unþ1

k � ~un
k

D~t
� rhsuk ¼

~unþ1
k � ûk

D~t
þ ûk � ~un

k

D~t
� rhsuk ð8Þ

where ûk is a temporary parameter which satisfies the common
momentum equation, that is

ûk � ~un
k

D~t
� rhsuk ¼ 0 ð9Þ

Therefore, the forcing exerted on the Lagrangian points at the im-
mersed boundary is

FkðxkÞ ¼
~unþ1

k � ûk

D~t
¼ uL � ûk

D~t
ð10Þ

Under the effect of the forcing, the velocity on the Lagrangian
point xk at n + 1 time unþ1

k can be modified to the desired
velocity uL: The forcing is direct in the sense that the desired
value of velocity is imposed directly on the boundary without
any dynamical process [18] and the forcing is based upon the
law of conservation [21].

2.2.2. Direct heat source scheme
Considering the Dirichlet boundary condition of temperature at

the immersed boundary, the immersed boundary has a tempera-
ture TL: In order to let the temperature at the immersed boundary
equal TL or in other words, let the temperature on the Lagrangian
points at the immersed boundary satisfy the Dirichlet boundary
condition of temperature, a heat source QkðxkÞ is imposed on the
Lagrangian point to modify its temperature equal the desired tem-
perature TL at the immersed boundary. The heat source QkðxkÞ is
determined as follows.

From the energy equation (Eq. (3)) of the flow field, one can get
~q ¼ @
~T
@~t
þ ~u � r~T � 1

Pe
r2~T ¼ @

~T
@~t
� rhsT ¼

~Tnþ1 � ~Tn

D~t
� rhsT ð11Þ

rhsT ¼ � ~u � r~T � 1
Pe
r2~T

� �
ð12Þ

And for the Lagrangian point xk at the immersed boundary, one can
get

QkðxkÞ ¼
~Tnþ1

k � ~Tn
k

D~t
� rhsTk ¼

~Tnþ1
k � T̂k

D~t
� T̂k � ~Tn

k

D~t
� rhsTk ð13Þ

where T̂k is a temporary parameter which satisfies the common en-
ergy equation, that is

T̂k � ~Tn
k

D~t
� rhsTk ¼ 0 ð14Þ

Therefore, the heat source exerted on the Lagrangian points at the
immersed boundary is

QkðxkÞ ¼
~Tnþ1

k � T̂k

D~t
¼ TL � T̂k

D~t
ð15Þ

Under the effect of the heat source in Eq. (15), the temperature on
the Lagrangian point xk at n + 1 time ~Tnþ1

k can be modified to the de-
sired velocity TL: The scheme for heat source is direct in the sense
that the desired temperature is imposed directly on the boundary
without any dynamical process.

2.2.3. Momentum and energy coupling between fluid and immersed
boundary

As described in Eqs. (4) and (5), the Dirac delta function is ap-
plied to spread the two-way coupling between Eulerian girds and
Lagrangian points at the immersed boundary. The temporary
velocity ûk and temperature T̂k on the Lagrangian point at the im-
mersed boundary xk are obtained from its surrounding Eulerian
grids x for two-dimensional computation as following

ûk ¼
X
x2X

û � dhðxk � xÞ � h2 ð16Þ

T̂k ¼
X
x2X

T̂ � dhðxk � xÞ � h2 ð17Þ

where û and T̂ are also the temporary parameters on the Eulerian
grids which satisfies the common momentum equation and com-
mon energy equation, respectively.

The effects of the forcing and heat source on the Lagrangian
points which spread into the Eulerian grids are expressed as:

~f ðxÞ ¼
Z

XP

FkðxkÞ � dðx� xkÞdxk ¼
XN

k¼1

FkðxkÞ � dhðx� xkÞ � DVk ð18Þ

~qðxÞ ¼
Z

XP

QkðxkÞ � dðx� xkÞdxk ¼
XN

k¼1

Q kðxkÞ � dhðx� xkÞ � DVk ð19Þ

where N is the number of Lagrangian points, and DVk is the discrete
volume for each Lagrangian point. The discrete volume for each
Lagrangian point is DVk ¼ h � Ds for 2D computation, where Ds is
the curve distance between two neighboring Lagrangian points of
the immersed boundary.

The discrete delta function is chosen as that of Griffith and Pe-
skin [22] for two-dimensional computation.

dhðx� xkÞ ¼
1

h2 dh
x� xk

h

� �
� dh

y� yk

h

� �
ð20Þ

where x ¼ ðx; yÞ; xk ¼ ðxk; ykÞ;h is the Eulerian mesh size, and

dhðrÞ ¼

1
8 ð3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p
Þ 0 � jrj < 1

1
8 ð5� 2jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p
Þ 1 � jrj < 2

0 2 � jrj

8><
>: ð21Þ
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To solve the governing equations, the spatial derivatives are
discretized using the fourth-order compact finite difference
scheme [23] based on non-staggered grid. The pressure-Poisson
equation derived by applying the divergence operator to the
momentum equations replaces the continuity equation that is sat-
isfied indirectly through the solution of the pressure equation. To
reduce the cost of core memory in simulations, the temporal inte-
gration scheme [24] is applied. The computational algorithm is de-
scribed as follows.

~uaþ1 ¼ ~un þ rhsua �
D~t

4� a
; a ¼ 0;1;2;3 ð22Þ

ûk ¼
X
x2X

~u4 � dhðxk � xÞ � h2 ð23Þ

FkðxkÞ ¼
uL � ûk

D~t
ð24Þ

~f ðxÞ ¼
XN

k¼1

FkðxkÞ � dhðx� xkÞ � DVk ð25Þ

~unþ1 ¼ ~u4 þ ~f ðxÞ � ~Dt ð26Þ

~Taþ1 ¼ ~Tn þ rhsTa �
D~t

4� a
; a ¼ 0;1;2;3 ð27Þ

T̂k ¼
X
x2X

~Ta � dhðxk � xÞ � h2 ð28Þ

Q kðxkÞ ¼
TL � T̂k

D~t
ð29Þ

~qðxÞ ¼
XN

k¼1

QkðxkÞ � dhðx� xkÞ � DVk ð30Þ

~Tnþ1 ¼ ~T4 þ ~qðxÞ � ~Dt ð31Þ

r2~P ¼ �r � ð~u � r~uÞ � @ðr �
~uÞ

@t
þr � ~f þ Gr

Re2r � ð~T � ~gÞ ð32Þ
2.2.4. Multi-direct forcing and multi-direct heat source processes
The formulation of direct forcing scheme and direct heat source

scheme is based on a single Lagrangian point. When applying di-
rect forcing and direct heat source on a group of interactional
Lagrangian points and spreading the effect of forcing and heat
source to Eulerian grids through the interpolation/extrapolation
scheme (or the Dirac delta function), the direct forcing scheme
and direct heat source scheme will not be so effectively. Different
schemes of discrete delta function can lead to different results. The
velocities and temperature on the Lagrangian points may not sat-
isfy the Dirichlet boundary condition very well during the process
of interpolation to obtain the simulated velocity and temperature
on the Lagrangian points and extrapolation to spread the forcing
and heat source effect to its surrounding Eulerian grids. The mul-
ti-direct forcing/heat source scheme can handle this problem. Un-
der the effect of the multi-direct forcing the velocity at the
immersed boundary can satisfy the no-slip boundary condition
immediately and accurately as discussed by Wang et al. [20] and
Luo et al. [25]. And the temperature on the Lagrangian points at
the immersed boundary can satisfy the Dirichlet boundary condi-
tion either which will be validated in Section 3. The multi-direct
forcing and multi-direct heat source processes are described in de-
tail as follows.

By solving Eqs. (22)–(26), the velocity of the whole flow field
~unþ1

1 is obtained where n + 1 is the time level and the subscript 1
represents exerting the direct forcing at the immersed boundary
for the first time. Then the velocity on the Lagrangian point is
ûk;1 ¼
X
x2X

~unþ1
1 � dhðxk � xÞ � h2 ð33Þ
The best result is ûk;1 ¼ uL; but always ûk;1 – uL: Though the
velocity at the immersed boundary can get close to the desired
velocity after a long period of time, the no-slip boundary condi-
tion is still not satisfied very well. For the sake of getting the
velocity on the Lagrangian point much close to the desired
velocity, the direct forcing is exerted for the second time which
makes

Fk;2ðxkÞ ¼
uL � ûk;1

D~t
ð34Þ

Then the forcing is spread from the Lagrangian points to the
Eulerian grids through the Dirac delta function

~f 2ðxÞ ¼
XN

k¼1

Fk;2ðxkÞ � dðx� xkÞ � DVk ð35Þ

After exerting the direct forcing for the second time, the velocity
of the whole flow field becomes

~unþ1
2 ¼ ~unþ1

1 þ ~f 2ðxÞ � D~t ð36Þ

Thus the velocity on the Lagrangian point at the immersed
boundary becomes

ûk;2 ¼
X
x2X

~unþ1
2 � dðxk � xÞ � h2 ð37Þ

The value of ûk;2 is expected to be closer to the desired velocity
uL than that of ûk;1: After NFM times of this procedure during one
time step, the velocity at the immersed boundary can get much
close to the desired velocity. The total forcing exerting on each
Lagrangian point FkðxkÞ is the sum of the forcing exerting on each
Lagrangian point for the whole NFM times, that is:

FkðxkÞ ¼
XNFM

i¼1

Fk;iðxkÞ ð38Þ

Besides the multi-direct forcing, the multi-direct heat source
process is proposed here. By solving Eqs. (27)–(30), the tempera-
ture of the whole flow field ~Tnþ1

1 is obtained. Then the temperature
on the Lagrangian point is

T̂k;1 ¼
X
x2X

~Tnþ1
1 � dðxk � xÞ � h2 ð39Þ

The direct heat source is exerted for the second time which
makes

Qk;2ðxkÞ ¼
TL � T̂k;1

D~t
ð40Þ

Then the heat source is spread from the Lagrangian points to the
Eulerian grids through the Dirac delta function

~q2ðxÞ ¼
XN

k¼1

Q k;2ðxkÞ � dhðx� xkÞ � DVk ð41Þ

After exerting the direct heat source for the second time, the
temperature of the whole flow field becomes

~Tnþ1
2 ¼ ~Tnþ1

1 þ ~q2ðxÞ � ~Dt ð42Þ

And the temperature on the Lagrangian point at the immersed
boundary is

T̂k;2 ¼
X
x2X

~Tnþ1
2 � dðxk � xÞ � h2 ð43Þ

The value of T̂k;2 is expected to be closer to the desired velocity
TL than that of T̂k;1: After NFE times of this procedure during one
time step, the temperature at the immersed boundary can get
much close to the desired temperature.



Fig. 1. Correlation between the l2;uv -norm and the times of multi-direct forcing NFM

to show the effect of multi-direct forcing exerting on the immersed boundary of the
embedded circular in the case of Taylor–Green vortices.

Fig. 2. Correlation of the l1;u-norm and l2;u-norm versus grid size to show the special
convergence in the case of Taylor–Green vortices.
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The multi-direct forcing and multi-direct heat source processes
for the calculation of the momentum and energy coupling between
immersed boundary and fluid can be summarized as follows:

(1) Solving Eq. (22) to obtain the flow field ~unþ1
1 :

(2) Solving Eq. (33) to get the velocity at the immersed boundary.
(3) Verifying the error between the calculated velocity at the

immersed boundary and the desired velocity and the times
of exerting direct forcing. If the error is larger than a desired
value or the times is not reached the targeted times NFM; the
next time of direct forcing procedure is started. If the error is
smaller than a desired value or the times is greater than the
targeted times NFM ; then go to next.

(4) Solving Eq. (27) to get the temperature distribution in the
whole computational domain.

(5) Solving Eq. (39) to get the temperature at the immersed
boundary.

(6) Verifying the error between the calculated temperature at the
immersed boundary and the desired temperature and the
times of exerting direct heat source. If the error is larger than
a desired value or the times is not reached the targeted times
NFE; the next time of direct heat source procedure is started. If
the error is smaller than a desired value or the times is greater
than the targeted times NFE, then solving the pressure-Poisson
equation (32) and beginning the next time loop.

3. Numerical implement and discussion

To validate the accuracy of method proposed in Section 2, we
first calculate the Taylor–Green vortices problem which has an
analytical solution. Then natural convection between concentric
cylinders and the flow past a stationary circular cylinder are simu-
lated with present method. At last the flow past a staggered tube
bank with heat transfer are simulated to verify the capability of
present method on solving complex geometries problems.

3.1. Taylor–Green vortices

In order to validate the multi-direct forcing effect and spatial
accuracy of the present immersed boundary method with multi-di-
rect forcing scheme, the case of two-dimensional decaying vortices
with analytical solution (Eqs. (44)–(46)) is simulated.

~uð~x; ~y;~tÞ ¼ � cosðp � ~xÞ � sinðp � ~yÞ � expð�2p2~t=ReÞ ð44Þ
~vð~x; ~y;~tÞ ¼ sinðp � ~xÞ � cosðp � ~yÞ � expð�2p2~t=ReÞ ð45Þ
~pð~x; ~y;~tÞ ¼ �1=4½cosð2p � ~xÞ þ cosð2p � ~yÞ� expð�4p2~t=ReÞ ð46Þ

Kim et al. [4] calculated this problem in a quadrilateral embedded
domain and Uhlmann [19] solved this case in an embedded circular
domain. And here, we calculated this problem in an embedded cir-
cular domain with radius unity and centered at the whole compu-
tational domain X ¼ ½�1:5;1:5� � ½�1:5;1:5� with Re = 100. The
boundary conditions for whole computational domain and desired
velocity at the immersed boundary are given by Eqs. (44)–(46).

Fig. 1 shows the effect of multi-direct forcing exerting on the
immersed boundary of the embedded circular for D~t ¼ 0:001;
h ¼ 1=64 and at ~t ¼ 0:3: The l2;uv-norm is defined in Eq. (47) which
can show the error between the desired velocity ~uL ¼ ð~uL; ~vLÞ and
calculated velocity at the immersed boundary.

l2;uv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1½ð~uk � ~uLÞ2 þ ð~vk � ~vLÞ2�

N

s
ð47Þ

where ~uk ¼ ð~uk; ~vkÞ is the velocity on kth Lagrangian point at the im-
mersed boundary. The magnitude of l2;uv-norm is decreased as the
increment of the times NFM of multi-direct forcing for momentum
coupling between the fluid and the immersed boundary. This indi-
cates the no-slip boundary condition of velocity at the immersed
boundary is satisfied better with the multi-direct forcing scheme
than that for the original direct forcing scheme (NFM ¼ 1). And
NFM ¼ 20 will be applied in the following computation. The time
cost of each iterative process of the multi-direct forcing in this case
on a P4, 2.8 GHz CPU is 3:906� 10�3 s corresponding to
5:466� 10�2 and 5:859� 10�2 s at one time step for solving the
momentum equations and the Poisson equation, respectively. Con-
sidering a better satisfaction of the no-slip boundary at the im-
mersed boundary, the time cost of the multi-direct forcing is
acceptable.

Fig. 2 shows the convergence of spatial accuracy for D~t ¼ 0:001
and results at ~t ¼ 0:3 with mesh size h ¼ 1=8;1=16;1=32;1=64 and
1=128, and corresponding Lagrangian points are 56, 110, 220, 440
and 880, respectively. The l1;u-norm and l2;u-norm are defined in
Eqs. (48) and (49), respectively.

l1;u ¼
1

NXNY

XNX NY

k¼1

j~unumerical
k � ~uexact

k j ð48Þ

l2;u ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

NXNY

s XNX NY

k¼1

ð~unumerical
k � ~uexact

k Þ2 ð49Þ



Fig. 4. Correlation of l2;T -norm defined in Eq. (50) versus the times of direct heat
source NFE for temperature with mesh size h ¼ 1=64; number of Lagrangian points
on each cylinder N ¼ 736 and time step D~t ¼ 0:001:

Fig. 5. Counter of temperature distribution for the case of Natural convection
between concentric cylinders.
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where NX and NY are the total mesh points in x and y direction,
respectively.

The l1;u-norm and l2;u-norm are decreased in slope 2 as the dec-
rement of mesh size which corresponds to second-order conver-
gence in spacial accuracy.

3.2. Natural convection between concentric cylinders

In this case natural convection in the annulus between horizon-
tal concentric cylinders is simulated. The computational parame-
ters are the same as Kuehn and Goldstein [28] and Gan et al.
[29]. The inter cylinder has a radius Ri ¼ 0:625 and temperature
~Ti ¼ 1; while the outer cylinder has a radius Ro ¼ 1:625 and tem-
perature ~To ¼ 0:. The schematic diagram for entire computational
domain is shown in Fig. 3. The two concentric cylinders are place
at (2.5, 2.5) and the size of whole computational domain is 5� 5:
Due to the difference of the radius of the two cylinders, the num-
bers of Lagrangian points at the immersed boundary are different.
However, for the sake of convenience, the same number of
Lagrangian points at the two immersed boundary is applied. The
Peclet number is Pe ¼ 1; the Prandtl number is Pr = 0.7, and the
Rayleigh number is Ra ¼ 5� 104; which is defined as Ra ¼ Gr � Pr:
The NFM ¼ 20 of multi-direct forcing is used and the effect of mul-
ti-direct heat source scheme will be analyzed.

Fig. 4 shows the correlation of l2;T -norm defined in Eq. (50) and
the times of direct heat source NFE for temperature with mesh size
h ¼ 1=64; number of Lagrangian points on each cylinder N ¼ 736
and time step D~t ¼ 0:001: As the increment of the times of direct
heat source NFE; the l2;T -norm decreases for the two cylinders. This
indicates the computational value of temperature at the immersed
boundary satisfied the desired temperature better for larger NFE

than that for smaller NFE. And the multi-direct heat source process
can reduce the error between the computational value of temper-
ature and the desired value of temperature effectively.

l2;T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ð~Tk � TLÞ2

N

s
ð50Þ

The counter of temperature distribution is shown in Fig. 5. And
Fig. 6 shows the temperature distribution between the two cylin-
ders at h ¼ 120� and the comparison with the results from Kuehn
et al. [28], Gan et al. [29]. A good agreement is obtained.
Fig. 3. Schematic diagram of whole computational domain for the case of natural
convection between concentric cylinders.

Fig. 6. Temperature distribution between the two cylinders at h ¼ 120� and the
comparison with the results from Kuehn et al. [28], Gan et al. [29].
Fig. 7 shows the convergence of the l1;T -norm and l2;T -norm de-
fined in Eqs. (51) and (52) with mesh sizes h ¼ 1=16;1=32 and
1=64 in the magnitude of temperature field relative to the ‘‘bench-



Fig. 7. Convergence of the l1;T -norm and l2;T -norm with mesh sizes h ¼ 1=16;1=32
and 1=64 in the magnitude of temperature field relative to the ‘‘benchmark”
solution of temperature field obtained on mesh size h ¼ 1=128:

Fig. 8. Schematic view of computational domain for the case of flow past a
stationary with heat transfer.

Fig. 9. Comparison of local Nusselt number near the cylinder between the results of
Chang et al. [2], Gan et al. [29], Dennis et al. [30] and present results.

Fig. 10. Distribution of streamline accompanied with temperature field at the
surface of the cylinder.
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mark” solution of temperature field obtained on grid size
h ¼ 1=128:

l1;T ¼
1

NXNY

XNX NY

k¼1

~Tnumerical
k � ~Tbenchmark

k

��� ��� ð51Þ

l2;T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NXNY

XNX NY

k¼1

ð~Tnumerical
k � ~Tbenchmark

k Þ2
vuut ð52Þ

The l1;T -norm and l2;T -norm is decreased in slope 2 as the decrement
of mesh size which corresponds to second-order convergence in
temperature field.

3.3. Flow past a stationary circular cylinder with heat transfer

For the flow past a stationary circular cylinder with heat trans-
fer, Dennis et al. [30] solved this problem by obtaining solutions of
the heat transfer equation based on the correct velocity distribu-
tion in the field of flow according to the full Navier–Stokes equa-
tions. Chang et al. [2] applied the finite-element method and
body-fitted mesh to solve this problem. Gan et al. [29] applied fi-
nite-element method and the arbitrary Lagrangian–Eulerian tech-
nique to solve the forced convection around a stationary circular
cylinder. And here, we compute the same case as Dennis et al.
[30], Chang et al. [2] and Gan et al. [29].

The schematic of computational domain is shown in Fig. 8. The
non-dimensional computational domain is 28� 20 when takes the
diameter of circular cylinder as the characteristics length. At the
inflow boundary, ~u ¼ 1; ~v ¼ 0; ~T ¼ 0 are given where ~u ¼ ð~u; ~vÞ:
At the boundaries in y direction, @~T

@y ¼ 0; @~u
@y ¼ 0; ~v ¼ 0 are given.

And at the outflow boundary, the non-reflecting condition [31]
are applied @~u

@~t þ c @~u
@x ¼ 0; @~T

@~t þ c @~T
@x ¼ 0. At the immersed boundary

of the circular cylinder, the desired velocity and desired tempera-
ture are ~u ¼ 0; ~v ¼ 0; ~T ¼ 1, respectively. The Reynolds number is
Re = 20, the Prandtl number is Pr = 0.73, and the Grashof number
is Gr ¼ 0: The times of multi-direct forcing scheme and the mul-
ti-direct heat source scheme are the same NFM ¼ NFE ¼ 20. The
time step is D~t ¼ 0:0005, the mesh size is h ¼ 1=96 and the number
of Lagrangian points at the immersed boundary is N ¼ 332:

Fig. 9 shows the comparison of local Nusselt number near the
cylinder from the results of Chang et al. [2], Gan et al. [29], Dennis
et al. [30] and present results. A good agreement is obtained. The
streamline accompanied with temperature distribution is shown
in Fig. 10. Table 1 shows the drag coefficient Cd and wake length
Lw (measured from rear end of cylinder) of present results compar-
ing with the experimental result of Tritton [32] and numerical re-
sults of Dennis et al. [26] and Ye et al. [27]. Our results are in good
agreement with previous experimental and numerical results.



Table 1
Comparison of drag coefficient Cd and wake length Lw .

Re = 20 Cd Lw

Present 2.18 0.946
Tritton [32] 2.22 –
Dennis et al. [26] 2.05 0.94
Ye et al. [27] 2.03 0.92

Table 2
Comparison of the average Nusselt number.

Authors Present Grimison [8] Zukauskas[1]

hNui 4.08 3.71 3.45

Fig. 12. Local Nusselt number distribution along the tubes surface where the tube
numbers are marked in Fig 11: (a) from the first tube to the ninth tube; (b) from the
second tube to the ninth tube after the transfer equation
Nuðh;mÞ ¼ Nuðh;2Þ � 1:792�mðm 	 2Þ.
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3.4. Flow past a staggered tube bank with heat transfer

The flow past a staggered tube bank with convective heat trans-
fer is computed to verify the ability of present methods to complex
geometries. The staggered tube bank is composed by 77 cylinders
immersed in a rectangular domain. The whole computational do-
main is 18� 22 when takes the diameter of cylinder as the charac-
teristics length. The distances between two rows in streamwise
direction and transverse direction are the same which is 2. And
the other computational parameters including the Reynolds num-
ber, the Prandtl number, the Grashof number, the times of NFM and
NFE, the time step, the mesh size and the number of the Lagrangian
points used for a cylinder are the same as these in Section 3.3. The
inflow and outflow boundary conditions are the same as these in
Section 3.3 and the no-slip boundary condition is imposed on the
boundaries in transverse direction.

The distribution of temperature field is shown in Fig. 11. The
average Nusselt number can be obtained from Eq. (53) by using en-
ergy balance.

hNui ¼ �RePr
NTrSTr

pND
lnð1� h~ToutiÞ ð53Þ

where NTr is the number of tubes in transverse direction, STr is the
dimensionless transverse distance between two consecutive tubes,
ND is the number of total tubes and h~Touti is the average dimension-
less temperature at the outflow boundary.

Table 2 shows the comparison of the present average Nusselt
number with previous empirical correlations. Present result is
about 10% higher than the result of Grimison [8] and about 18%
higher than the result of Zukauskas [1]. Considering the accuracy
of about 25% of the empirical correlations [9], the agreement of
the average Nusselt number is good.

The local Nusselt number distribution along the tubes surface is
shown in Fig. 12a where the tube numbers are marked in Fig. 11.
Interestingly, the local Nusselt number distributions on the tubes
from the second to the ninth are almost the same after the transfer
calculation by Eq. (54) as shown in Fig. 12b. The local Nusselt num-
ber distribution on the mth tube’s surface can be written as:
Fig. 11. Distribution of temperature field for the case of flow past a staggered tube
bank with heat transfer at Re = 20.
Nuðh;mÞ ¼ Nuðh;2Þ � 1:792�m; m 	 2 ð54Þ

or more general, we can get

Nuðh;m1Þ ¼ Nuðh;m2Þ � 1:79m2�m1 ; m1 	 2; m2 	 2 ð55Þ

where Nuðh;mÞ is the Nusselt number at the h position on the mth
tube’s surface.

4. Summary and conclusion

In the present paper, the immersed boundary method with fi-
nite difference scheme is extended to solve heat transfer problem.
A direct heat source scheme is proposed to let the temperature at
the immersed boundary satisfied the temperature Dirichlet bound-
ary condition. And the explicit interactive process of the direct heat
source scheme called multi-direct heat source scheme is applied to
ensure the satisfaction of the temperature Dirichlet boundary con-
dition at the immersed boundary. The second-order spacial accu-
racy of the solver has been confirmed by simulating the Taylor–
Green vortices. The simulations of natural convection between
concentric cylinders, and flow past a stationary circular cylinder
have been conducted to validate the accuracy of present method
on solving heat transfer problems. And at last, the computation
of flow past a staggered tube bank with heat transfer has been
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done to verify the capability of present method on solving complex
geometries problems.

The main advantage of the multi-direct forcing/heat source
scheme is that the error between the calculated value of velocity/
temperature and the desired velocity/temperature at the im-
mersed boundary are decreased when applies the multi-direct
forcing/heat source scheme. And this has been validated through
the calculation of the Taylor–Green vortices and the natural con-
vection between concentric cylinders.
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